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Abstract

Two parallel ¯uid streams in counter¯ow and in close thermal contact convect an energy current longitudinally,
in the direction of the warmer stream. This paper describes the ¯ow of convective heat currents through two
identical tree networks superimposed, and oriented in counter¯ow. The convective currents form a single tree. The
¯uid ¯ow is laminar through straight tubes. The ratios of successive tube diameters and tube lengths are deduced

from the minimization of ¯ow resistance subject to two constraints, total volume and total tube volume. It is shown
that the total heat current convected by the double tree is proportional to the total volume raised to power 3/4. The
conclusion is that the resistance to the loss of body heat governs the relation between metabolic rate and body size

in all animals. 7 2001 Elsevier Science Ltd. All rights reserved.

1. The old heat transfer theory of body heat loss

Allometric laws are widely recognized power-law re-
lations between geometric and functional (¯ow) par-

ameters of living bodies. They are accurate over wide
ranges of body size [1±6]. Predicting these relations
from a purely theoretical standpoint has been a real

challenge. This paper is about one of the most challen-
ging of all allometric laws, the proportionality between
metabolic rate and body mass M (or volume V ) raised
to the power 3/4.

The pre-1984 history of the theoretical attempts to
predict this relation was recounted by Schmidt-Nielsen
[2]. From this history, most relevant to the present

work is the earliest theory; the metabolic rate must be

proportional to the heat loss from the body to the

ambient. Since the convective heat loss is proportional
to the body surface, the metabolic rate must be pro-
portional to the length scale (V 1/3) squared, i.e. body

mass or volume raised to power 2/3. I refer to this ear-
liest explanation (principle) as the heat transfer theory.
It is outlined in detail in [6].
The heat transfer theory was e�ectively discredited

in the second half of this century by mounting obser-
vations of birds and mammals, indicating an exponent
much closer to 3/4 than 2/3. The heat transfer theory

was pushed aside completely by the ¯ow network
models of West et al. [7] and Banavar et al. [8], which
drew attention to a class of interesting relations

between geometric and ¯ow parameters in an opti-
mized tree network for ¯uid ¯ow. To discuss these
models is not the objective of my paper, which instead

presents a theory, not a model. It is su�cient to note
that, as in earlier optimizations of ¯uid tree networks
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in physiology and river morphology [9±12], West et
al.'s [7] optimization was based on invoking the mini-

mization of pumping power, this among several other
important assumptions.
My objective is to propose a much more direct and

familiar explanation for the 3/4-power exponent. I sub-

mit this as a purely engineering alternative to the more
recent and more complicated explanations that have
been proposed. My explanation is based on the dis-

carded heat transfer theory.

2. Constructal tree-shaped ¯ows

Why should anyone question the current models by
resurrecting an abandoned theory? I have two reasons.
First, the invocation of the minimization of pumping

power makes sense, because reduced power consump-
tion makes sense to the animal (the animal would need
less food to survive). Less food means a lower meta-
bolic rate, i.e. a lower rate of heat loss to the ambient.

That is why in my view the minimization of pumping
power goes hand in hand with the old heat-loss doc-
trine, not against it. Minimum pumping power con-

sumption and minimum loss of body heat are parts of
the same constructal principle, how to be the ®ttest,
how to perform best, under constraints [1].

The second reason is that by minimizing pumping
power alone, the analysis [7] of the ¯uid tree leads to
the 3/4-power law that correlates mammals and birds.
The 3/4 exponent does not correlate cold-blooded ver-

tebrates [2], even though the bodies of reptiles, amphi-
bians and ®sh are also dominated by ¯ow structures
shaped as trees.

Heat transfer is the new element introduced by the
following analysis. Unlike in the heat loss theory of
the 19th century, heat transfer is not considered to be

in isolation. It is combined with the more recent pro-
gress made, based on pumping power minimization in
¯uid tree networks [6±12].

The starting point of this inquiry is not West et

al.'s [7] tree model but my own constructal designs,

which I published from 1996 [13±16]. Constructal

trees are purely engineering designs for ¯ow with

minimum resistance between one point (source, sink)

and an in®nity of points (volume, area). The optim-

ization is subjected to two constraints, ®xed total

volume and ®xed channel volume. It begins with

the smallest subvolume (called elemental volume),

the size of which is assumed to be ®xed. The op-

timization continues in a sequence of steps of

assembly or construction, from small to large, in

order to cover the total given volume. In the end,

every feature of the point-volume ¯ow is known as

the result of the optimization principle. Even the

integor 2 for dichotomy (bifurcation, pairing) is

deduced from the optimization principle. The result-

ing ¯ow path is a dichotomous tree Ð a purely

theoretical structure, designed for an engineering

purpose.

There is no room and no need to reproduce here

the geometric features of the theoretical ¯uid tree,

which are explained in [6,16]. I found that the main

features of that structure can be illustrated brie¯y

by optimizing a plane construct consisting of a T-

shaped junction (Fig. 1A). For simplicity, assume

right angles and Hagen±Poiseuille ¯ow with constant

properties. Extensive numerical optimization work

on constructal trees for conduction heat transfer

[15] has shown that the optimization of the angle

of con¯uence plays only a minor role in the overall

resistance of the construct.

The stream _mi encounters the ¯ow resistance of two

Li + 1 tubes in parallel, which are connected in series

with one Li tube. When the resistance is minimized by

®xing the total tube volume, we ®nd the optimal diam-

eter ratio Di + 1/Di=2ÿ1/3. This old result is known as

Murray's law [9,10]. It is an extremely robust result,

because it is independent of the lengths (Li, Li + 1) and

Nomenclature

a exponent
cp speci®c heat at constant pressure
D diameter

f length increase factor, Li + 1/Li

h heat transfer coe�cient
i construction level

k tissue thermal conductivity
kf ¯uid thermal conductivity
L length
_m mass ¯ow rate

n number of levels of construction
N total number of tubes
p perimeter of contact

q heat current
R1,2,3 thermal resistances (Fig. 1E)
t spacing between tubes

V volume

Greek symbol

DT temperature di�erence
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Fig. 1. The construction of the tree of convective heat currents, (A) the constrained optimization of the geometry of a T-shaped

construct; (B) the stretched tree of optimized constructs; (C) the superposition of two identical trees oriented in counter¯ow; (D)

the convective heat ¯ow along a pair of tubes in counter¯ow; and (E) the three resistances for heat ¯ow from the animal body to

the ambient.
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the relative position of the three tubes. It is indepen-
dent of geometry.

New is the optimization of the lengths when the
space allocated to the construct is ®xed. In Fig. 1A,
the space constraint is 2Li+1Li=constant. This second

minimization of the ¯ow resistance yields the optimal
length ratio Li+1/Li=f = 2ÿ1/3, which happens to
match the optimal diameter ratio. The optimized diam-

eter and length ratios are drawn to scale in Fig. 1A.
In the tree that was optimized step by step into

three-dimensional parallelepipedic constructs [6,16], the

tube lengths increase by factors in the cyclical sequence
2, 1, 1, 2, 1, 1, . . . The average of this factor for one
step is 21/3; therefore, the optimization of the plane
construct of Fig. 1A is a condensed summary of the

optimized three-dimensional construct averaged over
each three-step cycle. The averaged tree is laid out
(stretched) in Fig. 1B, so that we can see all the tubes

and levels (i) of construction. The number of tubes at
level i is Ni=2i and the total number of levels is n.
This concludes the introductory analysis of the

theoretical tree. It is not necessary to accept the con-
structal method as the origin of this structure. The fol-
lowing heat transfer analysis may also be started right

from here, by accepting the tree network heuristically,
i.e. as an assumption, or model.

3. Tree of convective heat currents

We now turn our attention to the ¯ow of heat
between the root and the canopy of the tree. This pro-
posal is new. Interesting is the heat lost by a warm-

blooded animal through the volume situated under its
skin. The trees of blood vessels are one geometric fea-
ture under the skin, but not the only one. The other is
the superposition of the arterial and venous trees, so

closely and regularly that tube i of one tree is in coun-
ter¯ow with tube i of the other (Fig. 1C). The existence
of counter¯ows of blood and other ¯uids is widely

recognized in physiology [2,3]. It is also recognized in
bioengineering where it serves as basis for a successful
model of heat transfer through living tissues [17,18].

The counter¯ow formed by two tubes of level i is
shown in the detailed drawing of Fig. 1D. The arterial
stream is warmer than the venous stream: heat ¯ows
transversally, from stream-to-stream. Consider now the

adiabatic control surface drawn with dashed line
around the counter¯ow. Since the enthalpy of the war-
mer stream is greater than that of the colder stream,

the counter¯ow convects longitudinally the energy cur-
rent qi= _micpDTt,i, where, cp is the blood speci®c heat,
and DTt,i is the stream-to-stream temperature di�er-

ence at level i. It is known in bioheat transfer [17,18]
and even earlier in cryogenic engineering [19,20] that
such a counter¯ow sustains a longitudinal temperature

gradient, DTi/Li, and that the convective energy cur-
rent is proportional to this gradient,

qi � � _micp� 2
hipi

DTi

Li
�1�

In this expression hi and pi are the overall stream-to-

stream heat transfer coe�cient and the perimeter of
contact between the two streams. In the case of blood
counter¯ow, the stream-to-stream thermal resistance

hi
ÿ1 is the sum of two resistances; the resistance
through the ¯uid in the duct (0Di/kf , where, kf is the
¯uid thermal conductivity), plus the resistance through

the solid tissue that separates two tubes (0ti/k, where k
is the tissue thermal conductivity). Even when the
tubes touch, ti is of the same order as Di. In addition,
since kf 0 k, we conclude that hi 0 k/Di, and Eq. (1)

becomes

DTi0
qiLik

_m 2
i c

2
p

�2�

The double tree structure of ¯uid streams is a single
tree of convective heat streams with zero net mass
¯ow. The convective tree stretches from the core tem-

perature of the animal (at i = 0) to the skin tempera-
ture. The latter is registered in many of the elemental
volumes (i=n ) that happen to be near the skin. The

many counter¯ows of the double tree sustain the over-
all temperature di�erence DT (constant),

DT �
Xn
i�0

DTi0
q0k

_m 2
0 c

2
p

Xn
i�0

NiLi �3�

In going from Eq. (2) to Eq. (3) we used the continuity
relations for ¯uid ¯ow (Ni _mi= _m0, constant) and heat
¯ow (Niqi=q0, constant). Recalling that Li + 1/Li=f,

we substitute Li=L0f
i, Ln=L0f

n and Ni=2i into Eq.
(3), and after rearranging we obtain

q00
�
q0
_m0

� 2 kLnf
ÿn��2f �n�1 ÿ 1�

c 2pDT�2fÿ 1� �4�

Separated on the right hand side are the quantities
that are constant, and the quantities that depend on n

(the number of construction steps). Note that the ratio
q0= _m0 is independent of body size (n ) because both q0
and _m0 are proportional to the metabolic rate.

The volume scale is estimated by regarding the
stretched tree as a cone in Fig. 1B. The base of the
cone (at i=n ) has an area of size NnL

2
n 02nL 2

n : The
height of the cone is of the same order as the sum of
all the tube lengths, L0+L1+ . . . +Ln=L0(1ÿf n + 1)/
(1ÿf ). In conclusion, the volume scale is
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V0L3
n

�
2

f

�n 1ÿ f n�1

1ÿ f
�5�

4. Heat loss versus body size

The relation between metabolic rate and total
volume is obtained by eliminating n between Eq. (4)

and Eq. (5). The result is visible in closed form if we
assume that n is su�ciently large so that (2f )n + 1w1
in Eq. (4) and f n + 1<<1 in Eq. (5). In this limit, q0 is

proportional to 2n, and V is proportional to (2/f )n.
From this follows the nakedly simple result

log q0
log V

� 3

4
�6�

which means that q0 must be proportional to V 3/4.
The proportionality between metabolic rate and body

size raised to the power 3/4 has been predicted from
pure theory. It can be veri®ed numerically that Eq. (6)
is accurate even for small n.

The 3/4 exponent that has been so puzzling over the
years is a re¯ection of the optimized ratio of successive
tube lengths, inside a ®xed space, Li + 1/Li=f = 2ÿ1/3.
Geometry is the key. Speci®cally, if we use f = 2ÿa in

the derivation of Eq. (6), instead of 3/4, we obtain
(1+a )ÿ1, where, a = 1/3. The 3/4 exponent is inti-
mately tied to the optimization that generated the tube

length ratio subject to the total volume constraint,
after the ratio of tube diameters had been optimized
subject to the tube volume constraint. This double geo-

metric optimization, the two constraints, and the pair-
ing of tubes into constructs larger than the ®xed
elemental volume, is the essence of the constructal

method [1,6,13±16].

5. Discussion

In summary, what had been missing was the combi-
nation of (i) the tree architecture optimized for mini-

mum pumping power and (ii) the convective heat
transfer (or, better, thermal insulation) characteristics
of two identical ¯uid trees superimposed in counter-
¯ow. Putting (i) and (ii) together into a body heat-loss

theory of animal design is the contribution of construc-
tal theory.
The convective thermal resistance posed by the trees

in counter¯ow (R1 in Fig. 1E) resides inside the ani-
mal. This runs in parallel with a second internal resist-
ance (R2) associated with the conductive heat leak

through the solid tissue (R2 was neglected in the pre-
ceding analysis). On the outside of the animal, the heat
current ¯ows through the convective resistance associ-

ated with the body surface exposed to the ambient

(air, water).
In cold blooded vertebrates the temperature drop

across the internal resistance (R1, R2) is minimal, and,

when environmental temperature changes occur, the
dominant resistance is R3. Consequently, the heat loss

and metabolic rate should follow closely V 2/3.
In warm blooded animals, a signi®cant thermal re-

sistance is located on the body side of the skin,

(R1
ÿ1+R2

ÿ1)ÿ1. In larger animals R1 is less than R2, the
heat current is carried convectively by the double tree
(R1), and the metabolic rate follows the observed V3=4

trend.
The conductive resistance R2 is proportional to the

body thickness scale V 1/3 divided by the body surface
V 2/3, hence R20Vÿ1/3. The tree resistance R1 is pro-
portional to Vÿ3/4. The ratio R2/R10V 5/12 shows that

R2 becomes progressively weaker (i.e. the preferred
path) as the body size decreases. In that limit the expo-

nent in the power law between heat loss and body size
becomes 1/3. In other words, from heat transfer theory
alone we should expect a gradual decrease in the

power-law exponent as the body size decreases. At the
other end, 3/4 is the asymptotic value of the exponent
for large body sizes.

The lung is also a tree of convective currents, which
results from the superposition of two air-¯ow trees, the

inhaling ¯ow and the exhaling ¯ow. The convective
tree is made up of currents of heat, and constitutes a
heat-loss path of the same type as the tree analyzed

above. Cold air warms up gradually along the air
passages during inhaling. Warm air is cooled down
gradually along the same passages during exhaling.

The air passage (its wall tissue) acts as a regenerative
heat exchanger in the proper engineering sense [6,20].

In addition to the convective tree for heat, and based
on the same in and out mechanism, the lung works as
a tree-shaped path for the loss of water.

Another way to summarize the theoretical progress
that we just made is to recognize that the body surface

of warm blooded animals does not serve the same heat
transfer function as the surface of cold blooded ani-
mals. In mammals and birds the surface (or, better, the

vascularized tissue under the surface) serves a thermal
insulation function. That is why it has also been poss-
ible to predict, from the geometric minimization of

heat transfer, the well-correlated proportionality
between hair strand diameter and body size length

scale raised to the power 1/2 [21].
In lizards and salamanders the surface has the oppo-

site mission, it must facilitate the transfer of heat

between body and ambient and vice versa. For the
past three decades in thermal engineering, Bergles [22]
argued that the dorsal protuberances of large lizards

(the stegosaurus was Bergles' favorite) are ®ns in the
proper engineering sense, extended surfaces optimized
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for augmenting thermal contact. The present analysis
supports this view, and goes one step further to

suggest that the entire cold blooded body is elongated
(®n like), because it must permanently maximize its
contact with the ambient.
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